
Oriented Light-Field Windows for Scene Flow

Pratul P. Srinivasan1, Michael W. Tao1, Ren Ng1, Ravi Ramamoorthi2

{pratul,mtao,ren}@eecs.berkeley.edu, ravir@cs.ucsd.edu
1University of California, Berkeley, 2University of California, San Diego

Abstract

2D spatial image windows are used for comparing pixel
values in computer vision applications such as correspon-
dence for optical flow and 3D reconstruction, bilateral fil-
tering, and image segmentation. However, pixel window
comparisons can suffer from varying defocus blur and per-
spective at different depths, and can also lead to a loss
of precision. In this paper, we leverage the recent use of
light-field cameras to propose alternative oriented light-
field windows that enable more robust and accurate pixel
comparisons. For Lambertian surfaces focused to the cor-
rect depth, the 2D distribution of angular rays from a pixel
remains consistent. We build on this idea to develop an
oriented 4D light-field window that accounts for shearing
(depth), translation (matching), and windowing. Our main
application is to scene flow, a generalization of optical flow
to the 3D vector field describing the motion of each point
in the scene. We show significant benefits of oriented light-
field windows over standard 2D spatial windows. We also
demonstrate additional applications of oriented light-field
windows for bilateral filtering and image segmentation.

1. Introduction
Pixel value comparisons are used for a variety of

computer vision applications, including finding correspon-
dences between images for 3D reconstruction, enforcing
brightness consistency for calculating optical and scene
flow, calculating weights for adaptive filters such as bilateral
filters, and determining pixel similarity for image segmen-
tation. With conventional images, we can compare pixels
by comparing their RGB (or other color space) values. For
more robust comparisons, we can also compare 2D pixel
windows instead of individual pixels, but this involves a
loss of precision. Furthermore, both pixel value compar-
isons and window comparisons are prone to errors due to
the depth of objects in the scene; the windows correspond-
ing to the same scene points at two different depths will
appear different due to focal blur and perspective.

We propose a method to represent scene points, that uses

the information from 4D light-field images [2, 13], to enable
more accurate and robust pixel comparisons (Sec. 3). Each
spatial pixel has a 2D distribution of incident angular rays.
If focused to the correct effective depth in the scene, all an-
gular rays are consistent for Lambertian surfaces, since all
rays converge to the same scene point. When not focused
to the correct depth in the scene, the angular rays of a spa-
tial location on the sensor incorporate information from the
spatial neighborhood of the scene point. We leverage these
insights to develop oriented 4D light-field windows, that ac-
count for shearing in the light field ray space due to focusing
at different depths, translation for pixel matching, and win-
dowing. This is a general representation that in the limit
approaches a single spatial pixel with a 2D angular extent,
effectively replacing the 2D spatial window, and alleviating
issues with loss of precision and defocus blur.

A natural application is the computation of scene flow,
since it involves the estimation of corresponding spatial
points (Sec. 4). Scene flow [26] is the 3D vector field de-
scribing the motion of each scene point over time. It extends
the conventional notion of optical flow by also providing
the change in depth. Scene flow has many applications in
vision, including establishing correspondence, computing
camera and object motions, and estimating shape. We pro-
pose an algorithm to compute dense non-rigid scene flow
from a pair of light-field images, acquired using a con-
sumer light-field camera (Lytro Illum). We demonstrate that
oriented light-field windows provide better matching than
conventional spatial windows, and derive a 4D light-field
matching formula and energy minimization, analogous to
traditional 2D brightness consistency.

We further demonstrate oriented light-field windows by
using them for filtering images with a bilateral filter and
segmenting images (Sec. 5). We show that the results are
significantly better than when using traditional 2D images.

2. Previous Work

2.1. Light-Fields in Computer Vision

The 4D light-field is the total spatio-angular distribution
of light rays passing through free space, and light-field cam-

Figure 1. This setup shows two scenes in a 2D flatland, with side
views of (a) and (d) and camera views of (b) and (e). In the first
scene, the point is at the focal plane, and in the second scene, it is
in front of the focal plane. The conventional camera images in (b)
and (e) are different due to perspective and focal blur. We can see
in the 2D EPIs (c) and (f) that the change in depth corresponds
to a shear in ray-space. To compare these spatial points, we must
shear the light-fields to account for the depth.

eras capture the region of the light-field that exists inside
the camera body. Light-field data has enabled many ap-
plications such as post-capture image refocusing [13], lens
glare artifact reduction [17], and stereo reconstruction from
a single capture [2]. Light-field images can be used for pas-
sive general depth estimation [21, 23, 25, 28] by taking ad-
vantage of the multiple cues, such as defocus and corre-
spondence, that can be obtained from a single shot. In this
work, we make use of previous work that uses light-fields
for depth estimation and image refocusing, and we intro-
duce a light-field representation for scene points that can be
used to significantly improve results in scene flow, bilateral
filtering, and image segmentation.

2.2. Scene Flow

Scene flow was introduced by Vedula et al. [26], who
computed it by first estimating optical flow, the projection
of scene flow onto the image plane, in each camera and
then using triangulation to calculate a 3D motion field fit-
ted to the estimated optical flows. Later works compute
scene flow from stereo [6, 8, 11, 27, 29] or multi-view [5]
images at consecutive times, which involves estimating dis-
parity and the change in disparity over time in addition
to the optical flow. These works typically use variational
approaches to estimate the 3D geometry and flow, either
jointly [5, 6, 11, 27] or in a decoupled [29] manner. They
employ various methods of regularization and assumptions
about the piecewise rigidity of the scene and the flow field.
The method of [8] uses local estimation to efficiently com-
pute the 3D geometry and flow. Additionally, other recent
methods [9, 10, 12, 16] take advantage of the availability of
accurate dense depth information from RGBD cameras to
compute scene flow from pairs of RGBD images, typically
using the 2D parametrization from RGBD sensors, or, as
in [9], a 3D point cloud representation of the scene.

Figure 2. Oriented light-field windows (black ellipse represents
Gaussian weighted window) in a 2D flatland visualization of the
4D EPI, where a scene point (blue) has moved in position and
depth between two time steps. We want to match these two win-
dows to detect the same scene point.

2.3. Bilateral Filtering and Image Segmentation

The bilateral filter [24] has been used widely for many
applications such as image denoising, texture removal, and
image manipulation [14, 15] to smooth images while re-
specting edges. The majority of bilateral filtering tech-
niques use the RGB or CIE-Lab color space, and this has
been known to lead to bleeding artifacts at edges in certain
scenarios. Figure 7 shows that by using oriented light-field
windows, desired details and edges are preserved and we
improve the robustness of bilateral filters.

Image segmentation [7, 19] is a well-studied problem in
computer vision, with the goal of segmenting images into
semantically meaningful regions [3], or oversegmenting im-
ages into superpixels [1, 18]. Figure 8 shows that we are
able to improve the results of the popular SLIC superpixel
segmentation algorithm [1] in cases where using traditional
pixel values fails. By using oriented light-field windows in-
stead of CIE-Lab color space pixel values, we can better
detect texture edges with similar pixel intensity values.

3. Oriented Light-Field Windows
The angular rays of the light-field corresponding to the

same point in the scene should be consistent for a Lamber-
tian surface. However, to locate these rays in the light-field,
we must account for the shearing effect due to the difference
between the depth of the scene point and the light-field fo-
cal plane [13]. This is shown in Fig. 1, using a 2D flatland
epipolar image (EPI).

We represent each point in the scene as an oriented win-
dow in the light-field ray space, as visualized in Fig. 2. The
orientation of the window is defined by the shear of the
point’s effective depth, and the size of the window is de-
fined by spatial and angular Gaussian weights.

Mathematical Definition
As shown in Fig. 3, the oriented light-field window cor-

responding to a scene point can be computed by a shear
operator, a translation operator and a windowing operator,
as follows. The shear operator for depth α, as described

Figure 3. In this scene, a scene point moves in position and depth. In the 2D flatland visualizations of the 4D EPI (a) and (b), this
corresponds to a shear and a shift in position. In the 1D flatland visualizations of the 2D conventional image (i) and (j), this corresponds
to a focal blur and a shift in position. To match these two scene points using 4D oriented light-field windows, we shear as in (c) and (d),
translate as in (e) and (f), compute the 4D window defined by spatial and angular Gaussian weights as in (g) and (h), and then integrate
the difference between the two oriented light-field windows. In contrast, to match these two scene points using 2D image windows, we
translate as in (k) and (l), compute the 2D window defined by spatial Gaussian weights as in (m) and (n), and integrate the difference
between the two spatial windows.

in relation to the camera parametrization planes and scene
depths in [13], is:

Sα[L] ≡ Lα(x, y, u, v)

= L

(
x+ u(1− 1

α
), y + v(1− 1

α
), u, v

) (1)

The (spatial) translation operator is defined as usual as:

T∆x,∆y[L] ≡ L∆x,∆y(x, y, u, v) = L(x+ ∆x, y + ∆y, u, v)
(2)

The windowing operator is defined as:

W [L] = L(x, y, u, v)N (x, y;σ2
xy)N (u, v;σ2

uv), (3)

where N (s, t;σ2) represents a 2D Gaussian distribution on
the st plane, centered at the origin, with variance σ2 in each
dimension, i.e.

N (s, t;σ2) =
1

2πσ2
exp

(
− 1

2σ2
(s2 + t2)

)
Using these operators, the full oriented light-field win-

dow operator for a scene point at position (x0, y0, α) is:

Pα,x0,y0(x, y, u, v) ≡ (W ◦ Tx0,y0 ◦ Sα) [L], (4)

where Pα,x0,y0(x, y, u, v) can be written explicitly as:

Pα,x0,y0(x, y, u, v) = N (x, y;σ2
xy)N (u, v;σ2

uv)×
L (x+ x0 + u(1− 1/α), y + y0 + v(1− 1/α), u, v) .

(5)

Matching
A suitable application of oriented light-field windows

is to match pixels between two images, as discussed in
the next section on scene flow. In this case, we compare
two oriented light-field windows, for example Pα0,x0,y0

and Pα1,x1,y1 , computing the sum of squared differences
or equivalent metric over the entire 4D window. The pro-
cess of matching oriented light-field windows versus stan-
dard spatial windows is visualized in Fig. 3.

Limiting Cases
The above expression defines the general oriented 4D

light-field window. By taking appropriate limits, we can
reduce it to 2D spatial or 2D (oriented) angular windows.
First, consider σuv → 0, so that we restrict ourselves to
(u, v) = (0, 0). This reduces to a conventional 2D spatial
window in the central pinhole view,

P spatial
x0,y0 (x, y) = L (x+ x0, y + y0, 0, 0)N (x, y;σ2

xy).
(6)

If we take the limit of σuv → ∞ and σxy → 0, we
weight all angular directions equally, and the oriented light-
field window approaches an in-focus raw light-field image
of the point. This is the 2D set of angular directions for a
given spatial pixel,

P angular
α,x0,y0 (u, v) =

L

(
x0 + u(1− 1

α
), y0 + v(1− 1

α
), u, v

)
.

(7)

In practice, we often use these parameters, which ensures
the maximum precision (no spatial extent for windows) and
is also efficient (only 2D light-field windows are matched).
However, we emphasize that our formulation allows for
matching of general 4D oriented light-field windows.

4. Scene Flow
We now develop our algorithm for light-field scene flow.

We describe a simple extension to the standard 2D bright-
ness consistency notion, formulate the light-field scene flow
calculation as an energy minimization, and develop the op-
timization and regularization to compute the scene flow.

4.1. Light-Field Brightness Consistency
Scene flowF (x, y) can be described by a 3D vector field,

F (x0, y0) = (∆x,∆y,∆α) (8)

where (x0, y0) are pixel coordinates of a 3D point at an ef-
fective depth (shear) α0 in one frame, α1 in the next frame,
and (∆x,∆y,∆α) are the offsets (scene flow) between the
frames, with α1 = α0 + ∆α.

The traditional brightness consistency assumption in op-
tical flow is that the intensity in both images should be equal
for the same point in the scene, and traditionally spatial
pixel windows have been matched. By analogy, we assume
that the oriented light-field windows are equivalent for the
same point in the scene. That is, for all (x, y, u, v)

Pα0,x0,y0(x, y, u, v, t) =

Pα1,x0+∆x,y0+∆y(x, y, u, v, t+ 1),
(9)

where we add a variable t to account for different frames.

4.2. Scene Flow Formulation
We now proceed to solve for scene flow by minimizing

an energy function E that includes both a data term ED and
a smoothness term ES ,

F (x0, y0) = argmin
∆x,∆y,α0,α1

(
ED(x0, y0,∆x,∆y, α0, α1)

+ES(x0, y0,∆x,∆y, α0, α1)
)
.

(10)

This formulation also solves for the depths of each scene
point in both images, α0 and α1. The smoothness term ES
will be discussed in the next sub-section on regularization.
In this section, we focus on the data term:

ED(x0, y0,∆x,∆y, α0, α1) =∫ (
Pα0,x0,y0(x, y, u, v, t)

− Pα1,x0+∆x,y0+∆y(x, y, u, v, t+ 1)
)2
dx dy du dv.

(11)

In practice, the integral will be a discrete summation over
both the spatial and the angular domain. Note that this for-
mulation applies to both light-field images and traditional
images. As σuv → 0, the angular dimension collapses and
the equation reduces to a traditional optical flow formula-
tion with P spatial that just compares 2D pixel windows of
pixels from the two central pinhole images.

For robustness to errors in the initial depth estimation,
we also include integration over a range of shears, centered
at the estimated effective depth of the scene point, when
computing our data term.

4.3. Regularization
We use regularization in our scene flow method to en-

force a piecewise smooth flow field and propagate accurate
flow estimates to areas with low confidence and no local
signal. We use total variation regularization, which penal-
izes the integral of the absolute gradient of the flow field. In
the energy minimization framework, our smoothness regu-
larization term is:

ES(x0, y0,∆x,∆y, α0, α1) =

λCF (x0, y0)O(x, y)(|∇(∆x)|+ |∇(∆y)|)+
γCD(x0, y0)(|∇(∆α)|),

(12)

where CF and CD are confidence measures for the optical
flow and depth estimations, and O is a confidence measure
for the occlusion state of a pixel. We discuss how these
measures are computed in the next sub-section. In our im-
plementation, we use λ = 0.002 and γ = 0.1.

4.4. Scene Flow Estimation
Searching for the scene flow (∆x,∆y,∆α) that mini-

mizes Eq. 11 for every pixel is expensive due to the large
search space. We constrain the search space by decoupling
the depth and optical flow estimations, using the method
from Tao et al. [21] to estimate the depths in both light-field
images as well as calculate a depth estimation confidence
measure CD(x0, y0).

We then compute (∆x,∆y) by locally searching for the
minimum energy within a radius around every pixel, as
in the SimpleFlow algorithm [22], for efficiency due to
our high-dimensional data. We compute the confidence
CF (x0, y0) in (∆x,∆y) as the minimum subtracted from
the mean data energy within the search radius for each pixel.

CF (x0, y0) = mean
(∆x,∆y)∈N

ED(x0, y0,∆x,∆y, α0, α1)−

min
(∆x,∆y)∈N

ED(x0, y0,∆x,∆y, α0, α1)

(13)

where N is the set of (∆x,∆y) within the search radius.
This confidence is used in our regularization to increase the
smoothness term coefficient for less confident pixels.

We estimate the likelihood that a pixel is not located at an
occlusion boundary, O(x, y), by measuring the consistency
between the forward and backward optical flows. We use
this in our regularization to increase the smoothness term
coefficient for pixels that are more likely to be occluded.

The optical flow is optimized over a multiscale pyramid
with warping between pyramid levels, resulting in a coarse-

Figure 4. Local matching optical flow results (one pyramid level,
without regularization) calculated for a synthetic sphere trans-
lated to the right. Optical flow results are visualized with the Mid-
dlebury color code, and the confidence values are visualized with
a cold-to-warm color code, where warmer colors signify higher
confidence. Using oriented light-field windows provides more ac-
curate and less noisy optical flow results, with higher confidence.

to-fine strategy that allows the estimation of large displace-
ments. We median filter the intermediate flow results after
each warping, as discussed in [20], to remove outliers.

4.5. Results
To validate oriented light-field windows and their use in

computing scene flow, we evaluated our algorithm against
other state-of-the-art scene flow and optical flow algorithms
on both synthetic and real world scenes containing a variety
of shapes with motions including rotations and changes in
depth. We encourage readers to refer to our supplementary
material for more extensive comparisons and examples.

Synthetic Scenes
Figure 4 shows a comparison of local optical flow search

results (one pyramid level, without regularization) on a
translating synthetic diffuse sphere, using the RGB pixel
values from central pinhole images extracted from the light-
field, the same pixel values in the CIE-Lab color space, and
oriented light-field windows. All RMSE values are normal-
ized by the maximum possible flow error, so the possible
RMSE values range from 0 to 1. Using oriented light-field
windows yields significantly more accurate and less noisy
results with higher confidence, due to the ability of oriented
light-field windows to discriminate between scene points
with similar pixel intensity values.

Figure 5 shows a synthetic experiment for parameter val-
idation and analysis of the tradeoff between using spatial
and angular information in the 4D oriented light-field win-
dow. First, note that if we fix σxy , the RMSE decreases as
the angular variance increases from σuv → 0 (a 2D spatial
window) to essentially considering all directions equally.
This underlines the benefits of 4D light-field windows over
2D pixel windows. Next, consider spatial variance. For a
2D pixel window (σuv → 0), the error is quite sensitive

Table Cow Teddy
Ours 0.171 0.079 0.409
SRSF 0.353 0.248 0.433
MDP-Flow2 0.210 0.102 0.421
Classic+NL 0.199 0.199 0.395
Classic+NL, HR 0.192 0.151 0.416

Table 1. RMSE values for our algorithm evaluated against state-
of-the-art scene flow and optical flow algorithms on three synthet-
ically generated scenes. Example results of all the algorithms on
the table scene and our algorithm on the cow and teddy scenes are
in Fig. 6. The lowest RMSE for each scene is in bold, and our al-
gorithm is either the top performer (cow and table) or very close
in RMSE to the top performer (teddy).

to the spatial window size, trading off noise and precision
as expected. However, for oriented 4D light-field windows
considering all angular directions, the error is relatively in-
sensitive to σxy . In this example, we found a small spatial
window, corresponding to σxy = 5.45, to be optimal. In
practice, we use a spatial variance of zero and the optimal
(largest) angular variance σuv = 4.09 for efficiency, since
the benefit of using a larger spatial window is negligible.

Figure 6 shows our results for synthetic scenes compared
to state-of-the-art scene and optical flow algorithms. We
show example results for all algorithms on the table scene,
and our algorithm on the cow and teddy scenes. Each scene
has one moving Lambertian object with a complex shape,
rendered using a single point light source. We compare op-
tical flow results to the Semi-Rigid Scene Flow (SRSF) al-
gorithm of Quiroga et al. [16], the Classic+NL optical flow
algorithm of Sun et al. [20], and the Motion Detail Preserv-
ing Optical Flow (MDP-Flow2) algorithm of Xu et al. [30],
a top performer on the Middlebury optical flow bench-
mark [4]. We provide both optical flow algorithms and the
SRSF algorithm with the central pinhole view from each
light-field image as input. As an additional comparison, we
provide the Classic+NL method with high-resolution (HR)
pinhole images with the spatial resolution equal to our light-
field sensor resolution. The MDP-Flow2 method ran out of
memory (Intel Core i7 machine with 32 GB RAM) when
given the HR images. The SRSF algorithm is designed for
RGBD data from a sensor such as the Microsoft Kinect, and
requires a dense accurate depth estimation for each input
frame. In order to best satisfy this input requirement given
our light-field images, we provide the input depth estima-
tion calculated from the light-field images that we use in
our algorithm. We do not compare our algorithm to stereo-
scopic scene flow algorithms such as [6, 11, 27, 29], be-
cause they are meant to use pairs of stereo images with wide
baselines, and do not perform well when instead given pairs
of pinhole images extracted from a light-field camera.

Table 1 shows RMSE values for the algorithms on all
three scenes. Since only our algorithm and the SRSF al-
gorithm compute the flow in depth, we only quantitatively

Figure 5. RMSE for a synthetic sphere rotating 1.2◦. In the figure, we show the RMSE as a function of the spatial and angular variances
(a), and the slices of the graph at the optimal spatial (b) and angular variances (c) for our synthetic example. The location of the optimal
parameters is marked as a red asterisk on (a), and the ground truth local optical flow estimation (d) and results using the optimal (e)
and our practical implementation parameters (f) (one pyramid level, without regularization) are shown. The optical flow results look
discretized because integer-valued local optical flow estimation has no subpixel flow estimation. With oriented light-field windows, results
closely resemble the ground truth. From (a), the RMSE decreases as the angular variance increases up to the maximum provided by the
Lytro Illum camera. When σuv → 0, there is clearly an optimal σxy . However, when we use the optimal σuv , the benefit of using a larger
σxy is negligible. In practice, we use σxy = 0 and the optimal (largest) σuv = 4.09 for improved efficiency, and (e) and (f) show that there
is a negligible difference between using the optimal and practical implementation parameters.

Figure 6. We compare the results of our algorithm to the SRSF [16] scene flow algorithm and the MDP-Flow2 [30] and Classic+NL [20]
optical flow algorithms on three synthetic scenes, and the RMSE values can be seen in Table 1. For each example, the optical flow is
visualized with the Middlebury color code, and the flow in depth is visualized with the cold-to-warm color code in the color bars. The three
scenes have different motions: the cow moves up and away from the camera, the table moves to the left and towards the camera, and the
teddy rotates counterclockwise and moves towards the camera. Our scene flow results are more accurate than others’ in most cases.

Figure 7. We compare the results of bilateral filtering an image
using RGB or CIE-Lab to those using oriented light-field win-
dows, which are better for preserving textures such as the towel
and edges such as that between the felt and rubber.

compare the RMSE for the optical flow results of the algo-
rithms. As evident from the RMSE results, our algorithm is
either the most accurate or very close to the most accurate.
Looking at the qualitative results in Fig. 6, we can see that
our algorithm is able to accurately estimate the scene flow
in scenes where objects rotate and move in depth. Addi-
tionally, the Classic+NL HR results show that the decreased
spatial resolution of a light-field camera does not signifi-
cantly impact the flow estimation accuracy.

Real World Scenes
Figure 9 shows results of our scene flow algorithm on

natural images, captured with a Lytro Illum camera with 49
sub-aperture images. We compare our scene flow results
to the SRSF algorithm, and our optical flow results to the
Classic+NL and MDP-Flow2 algorithms. Oriented light-
field windows enable significantly more accurate scene flow
computation. We correctly estimate the scene flow for sig-
nificant depth changes, such as in the scenes with the hands
and the penguin toy, as well for scenes with similarly col-
ored objects, such as the scene with the tennis ball on a
towel. Note that we better capture the motion contours of
the hands, tennis ball, and penguin toy, and avoid the patchy
appearance of the scene flow from other algorithms.

5. Other Applications
5.1. Bilateral Filtering

Bilateral filter weights are determined by both the spatial
closeness and the photometric closeness. Instead of photo-
metric closeness, which is typically measured as Euclidean
distance in the RGB or CIE-Lab color space, we use the Eu-
clidean distance between oriented light-field windows at a
range of shears. Figure 7 shows that while all methods are
able to denoise the image, using oriented light-field win-
dows preserves textures and edges that are similar in pixel
value due to similar colors, low illumination, and noise.
5.2. Image Segmentation

Superpixel image segmentation is used as a building
block in algorithms such as semantic segmentation and mo-
tion estimation. We adapt the SLIC superpixel segmenta-
tion algorithm [1] to use oriented light-field windows at a

Figure 8. We compare the results of the SLIC superpixel segmen-
tation algorithm [1] using the default CIE-Lab pixel values and
oriented light-field windows. We adjust the color for the figure in-
sets to highlight the napkin edge for better visualization. Oriented
light-field windows are better for detecting the edge between the
paper napkin and the background wall.

range of shears instead of CIE-Lab pixel values. Figure 8
shows that using oriented light-field windows enables bet-
ter superpixel segmentation at edges that are similar in pixel
value due to similar colors, low illumination, and noise.

6. Conclusion and Future Work
We proposed oriented light-field windows, a novel ac-

curate and robust method of pixel comparison using light-
field images. Oriented 4D light-field windows represent
scene points by accounting for shearing (depth), transla-
tion (matching), and windowing. We apply oriented light-
field windows to compute scene flow, and show signifi-
cant benefits over standard 2D spatial windows by analyz-
ing the tradeoff between the spatial and angular variance
of the windows. We further demonstrate the benefits of
using oriented light-field windows by evaluating our algo-
rithm against state-of-the-art methods in scene and optical
flow. Finally, we demonstrate applications in bilateral fil-
tering and image segmentation, where we show that we are
able to better detect and preserve edges.

Oriented light-field windows are a general way to de-
scribe scene points, and can be used to formulate many
other problems, such as finding correspondences for recon-
struction and edit propagation in video, for light-fields. This
work builds the foundation for the use of light-field images
for many computer vision and graphics applications.

Acknowledgments
This work was supported in part by ONR grant N00014-15-
1-2013, funding from Nokia and Intel, and support by Sony
to the UC San Diego Center for Visual Computing. Some
of this work was done while Ren Ng was at Lytro, Inc.

Figure 9. We compare our scene flow results against the SRSF [16] RGBD scene flow algorithm, and the MDP-Flow2 [30] and Clas-
sic+NL [20] optical flow algorithms. For each example, the first row contains the optical flow (∆x,∆y) visualized with the Middlebury
color code, and the second row contains the flow in depth ∆α visualized with the cold-to-warm color code in the color bars, where the
green color corresponds to zero depth motion, cooler colors correspond to depth motion toward the camera, and warmer colors corre-
spond to depth motion away from the camera. In the top two rows, we have an example where two hands move in depth. We can see
that our algorithm is able to accurately estimate the scene flow, even at occlusion boundaries, with accurate contours around the hand
borders. In the second and third rows, we have an example where a tennis ball is on a towel, and they both shift slightly without significant
depth motion. We can see that our algorithm is able to accurately estimate the scene flow, adheres to the border of the ball, and correctly
calculates no significant changes in depth. In the bottom row, we have an example of a toy penguin that moves towards the camera. We
can see that our algorithm correctly estimates the scene flow and adheres to the object borders.

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Susstrunk. SLIC superpixels compared to state-of-the-art
superpixel methods. PAMI, 2012. 2, 7

[2] E. Adelson and J. Wang. Single lens stereo with a plenoptic
camera. PAMI, 1992. 1, 2

[3] P. Arbelaez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and
J. Malik. Semantic segmentation using regions and parts. In
CVPR, 2012. 2

[4] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and
R. Szeliski. A database and evaluation methodology for op-
tical flow. IJCV, 2011. 5

[5] T. Basha, Y. Moses, and N. Kiryati. Multi-view scene flow
estimation: a view centered variational approach. IJCV,
2012. 2

[6] J. Cech, J. Sanchez-Riera, and R. Horaud. Scene flow esti-
mation by growing correspondence seeds. In CVPR, 2011.
2, 5

[7] P. Felzenswalb and D. Huttenlocher. Efficient graph-based
image segmentation. IJCV, 2004. 2

[8] M. Gong. Real-time joint disparity and disparity flow esti-
mation on programmable graphics hardware. CVIU, 2008.
2

[9] S. Hadfield and R. Bowden. Scene particles: unregularized
particle based scene flow estimation. PAMI, 2014. 2

[10] E. Herbst, X. Ren, and D. Fox. RGB-D flow: dense 3-D
motion estimation using color and depth. In ICRA, 2013. 2

[11] F. Huguet and F. Devernay. A variational method for scene
flow estimation from stereo sequences. In ICCV, 2007. 2, 5

[12] A. Letouzey, B. Petit, and E. Boyer. Surface flow from depth
and color images. In BMVC, 2011. 2

[13] R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and
P. Hanrahan. Light field photographhy with a hand-held
plenoptic camera. CSTR 2005-02, 2005. 1, 2, 3

[14] S. Paris, S. Hasinoff, and J. Kautz. Local laplacian fil-
ters: edge-aware image processing with a laplacian pyramid.
ACM Transactions on Graphics, 2011. 2

[15] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand. Bilateral
filtering: theory and applications. In Foundations and Trends
in Computer Graphics and Vision, 2008. 2

[16] J. Quiroga, T. Brox, F. Devernay, and J. Crowley. Dense
semi-rigid scene flow estimation from RGBD images. In
ECCV, 2014. 2, 5, 6, 8

[17] R. Raskar, A. Agrawal, C. Wilson, and A. Veeraraghavan.
Glare aware photography: 4D ray sampling for reducing
glare effects of camera lenses. In ACM SIGGRAPH, 2008. 2

[18] X. Ren and J. Malik. Learning a classification model for
segmentation. In ICCV, 2003. 2

[19] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. PAMI, 1997. 2

[20] D. Sun, S. Roth, and M. Black. Secrets of optical flow esti-
mation and their principles. In CVPR, 2010. 5, 6, 8

[21] M. Tao, S. Hadap, J. Malik, and R. Ramamoorthi. Depth
from combining defocus and correspondence using light-
field cameras. In ICCV, 2013. 2, 4

[22] M. Tao, B. J., P. Kohli, and S. Paris. SimpleFlow: a non-
iterative, sub linear optical flow algorithm. In Eurographics,
2012. 4

[23] M. Tao, T.-C. Wang, J. Malik, and R. Ramamoorthi. Depth
estimation for glossy surfaces with light-field cameras. In
ECCV LF4CV, 2014. 2

[24] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In ICCV, 1998. 2

[25] I. Tosic and K. Berkner. Light field scale-depth space trans-
form for dense depth estimation. In CVPR Workshop on
Computational Cameras and Displays, 2014. 2

[26] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade.
Three-dimensional scene flow. In ICCV, 1999. 1, 2

[27] C. Vogel, K. Schindler, and S. Roth. Piecewise rigid scene
flow. In ICCV, 2013. 2, 5

[28] S. Wanner and B. Goldluecke. Globally consistent depth la-
beling of 4D light fields. In CVPR, 2012. 2

[29] A. Wedel, T. Brox, T. Vaudrey, C. Rabe, U. Franke, and
D. Cremers. Stereoscopic scene flow computation for 3D
motion understanding. IJCV, 2010. 2, 5

[30] L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving
optical flow estimation. PAMI, 2012. 5, 6, 8

